Home > Publications          
menu items, see below if you can't see them Matthew Gaunt Publications Research Contact Group Intranet Opportunities News

Publications

Gaunt Group

63. Chem. Sci., 2017, , Advance Article, Ligand-assisted palladium-catalyzed CH alkenylation of aliphatic amines for the synthesis of functionalized pyrrolidines
DOI:10.1039/C7SC00468K

62. Chem. Sci., 2017, 8, 2588, Cobalt-catalysed CH carbonylative cyclisation of aliphatic amides
DOI:10.1039/C6SC05581H

61. J. Am. Chem. Soc., 2017, 139, 1412, Palladium-Catalyzed Enantioselective C−H Activation of Aliphatic Amines Using Chiral Anionic BINOL-Phosphoric Acid Ligands
DOI:10.1021/jacs.6b12234

60. Science, 2016, 354, 851, A General Catalytic β-C−H Carbonylation of Aliphatic Amines to β-Lactams
DOI:10.1126/science.aaf9621

59. J. Am. Chem. Soc., 2016, 138, 13183, Enantioselective Cu-Catalyzed Arylation of Secondary Phosphine Oxides with Diaryliodonium Salts towards the Synthesis of P-Chiral Phosphines
DOI:10.1021/jacs.6b09334

58. Angew. Chem. Int. Ed., 2016, 128, 9024, Continuous-Flow Synthesis and Derivitization of Aziridines through Palladium-Catalyzed C(sp3)-H Activation
DOI:10.1002/anie.201602483

57. Chem. Sci., 2016, 7, 2706, The Total Synthesis of K-252c (Staurosporinone) via a Sequential C-H Functionalisation Strategy
DOI:10.1039/C5SC04399A

56. Synlett, 2016, 27, 116, Rapid Generation of Complex Molecular Architectures by a Catalytic Enantioselective Dearomitazation Strategy
DOI:10.1055/s-0035-1560514

55. Angew. Chem. Int. Ed., 2015, 54, 15840, Ligand-Enabled Catalytic C-H Arylation of Aliphatic Amines by a Four-Membered Ring Cyclopalladation Pathway
DOI:10.1002/anie.201508912

54. Nature Chem., 2015, 7, 1009, A Steric Tethering Approach Enables Palladium-Catalysed C-H Activation of Primary Amino Alcohols
DOI:10.1038/nchem.2367

53. J. Am. Chem. Soc., 2015, 137, 10632, Mechanistic Insights into the Palladium-Catalyzed Aziridination of Aliphatic Amines by C-H Activation
DOI:10.1021/jacs.5b05529

52. J. Am. Chem. Soc., 2015, 137, 7986, Enantioselective and Regiodivergent Copper-Catalyzed Electrophilic Arylation of Allylic Amides with Diaryliodonium Salts
DOI:10.1021/jacs.5b03937

51. Angew. Chem. Int. Ed., 2015, 54, 7857, Copper-Catalyzed Oxy-Alkenylation of Homoallylic Alcohols to Generate Functional syn-1,3-Diol Derivatives
DOI:10.1002/anie.201501995

50. Angew. Chem. Int. Ed., 2015, 54, 5451, A Concise and Scalable Strategy for the Total Synthesis of Dictyodendrin B Based on Sequential C-H Functionalization
DOI:10.1002/anie.201500067

49. Chem. Sci., 2015, 6, 1277, A Counterion Triggered Arylation Strategy Using Diaryliodonium Fluorides
DOI:10.1039/c4sc02856b

48. Angew. Chem. Int. Ed., 2014, 53, 13498, Gram-Scale Enantioselective Formal Synthesis of Morphine through an ortho-para Oxidative Phenolic Coupling Strategy
DOI:10.1002/anie.201408435

47. J. Am. Chem. Soc., 2014, 136, 8851, Cu-Catalyzed Cascades to Carbocycles: Union of Diaryliodonium Salts with Alkenes or Alkynes Exploiting Remote Carbocations
DOI:10.1021/ja504361y

46. Nature, 2014, 510, 129, Palladium-catalysed C-H activation of aliphatic amines to give strained nitrogen heterocycles
DOI:10.1038/nature13389

45. J. Am. Chem. Soc., 2013, 135, 12532, Copper-catalyzed Carboarylation of Alkynes via Vinyl Cations
DOI:10.1021/ja405972h

44. Angew. Chem. Int. Ed., 2013, 52, 9284, Copper-catalyzed Intramolecular Electrophilic Carbofunctionalisation of Allylic Amides
DOI:10.1002/anie.201303724

43. Angew. Chem. Int. Ed., 2013, 52, 5799, Copper-catalyzed Arylative Meyer-Schuster Rearrangement of Propargylic Alcohols to Complex Enones using Diaryliodonium Salts
DOI:10.1002/anie.201301529

42. J. Am. Chem. Soc., 2013, 135, 5332, Copper-catalyzed Electrophilic Carbofunctionalization of Alkynes to Highly Functionalized Tetrasubstituted Alkenes
DOI:10.1021/ja401840j

41. J. Am. Chem. Soc., 2013, 135, 3772, Organocatalytic C-H bond Arylation of Aldehydes to Bis-heteroaryl Ketones
DOI:10.1021/ja400051d

40. Angew. Chem. Int. Ed., 2012, 51, 9288, Chemical Synthesis of Aspidosperma Alkaloids inspired by the Reverse of the Biosynthesis of the Rhazinilam Family of Natural Products
DOI:10.1002/anie.201204151

39. J. Am. Chem. Soc., 2012, 134, 10773, Copper-catalyzed Alkene Arylation with Diaryliodonium Salts
DOI:10.1021/ja3039807

38. J. Am. Chem. Soc., 2011, 50, 13778, Enantioselective alpha-arylation of N-acyloxazolidinones with copper(II)-bisoxazoline catalysts and diaryliodonium salts
DOI:10.1021/ja206047h

37. Chem. Sci., 2011, 2, 1487, Catalytic enantioselective assembly of complex molecules containing embedded quaternary stereogenic centres from simple anisidine derivatives
DOI:10.1039/C1SC00218J

36. Chem. Soc. Rev., 2011, 40, 1885, Recent development in natural product synthesis using metal-catalysed C-H bond functionalisation
DOI:10.1039/c1cs15013h

35. Angew. Chem. Int. Ed., 2011, 50, 1076, Palladium(II)-Catalyzed C-H Bond Arylation of Electron-Deficient Arenes at Room Temperature
DOI:10.1002/anie.201005990

34. Angew. Chem. Int. Ed., 2011, 50, 458, A Highly Para-Selective Copper(II)-Catalyzed Direct Arylation of Aniline and Phenol Derivatives
DOI:10.1002/anie.201004703

33. Angew. Chem. Int. Ed., 2011, 50, 463, Copper(II)-Catalyzed meta-Selective Direct Arylation of α-Aryl Carbonyl Compounds
DOI:10.1002/anie.201004704

32. Chem. Sci., 2011, Advance Article, Amine directed Pd(II)-catalyzed CH bond functionalization under ambient conditions
DOI:10.1039/C0SC00367K

31. Tetrahedron., 2010, 66, 6429, (invited submission for Tetrahedron Award, Symposium-in-print: Professor Steven V. Ley) Alkynes to (E)-enolates using tandem catalysis: stereoselective anti-aldol and syn-[3,3]-rearrangement reactions
DOI:10.1016/j.tet.2010.05.045

30. Science, 2009, 323, 1593, A Meta-Selective Copper-Catalyzed CH Bond Arylation
DOI:10.1126/science.1169975

This paper was featured in:

Perspectives in Science:Copper Puts Arenes in a Hard Position

RSC Chemistry World:Copper catalysts give meta aromatics

Research Highlights in Nature Chemistry:Electrophilic arylation: Substitution success

Chemical and Engineering News:Dodging The Substitution Laws

Science News:Helping Molecules Reach Meta

Angewandte Chemie:Meta-Selective Transition-Metal Catalyzed Arene C-H Bond Functionalization

This paper was voted as one of the top 12 papers of 2009 by Chemical and Engineering News Chemical Year in Review 2009.

29. J. Am. Chem. Soc., 2008, 130, 16184, Oxidative Pd(II)-Catalyzed C-H Bond Amination to Carbazole at Ambient Temperature
DOI:10.1021/ja806543s

28. J. Am. Chem. Soc., 2008, 130, 8172, Cu(II)-Catalyzed Direct and Site-Selective Arylation of Indoles Under Mild Conditions
DOI:10.1021/ja801767s

27. Angew. Chem. Int. Ed., 2008, 47, 3004, Synthesis of Rhazinicine by a Metal-Catalyzed C-H Bond Functionalization Strategy
DOI:10.1002/ange.200705005

26. J. Am. Chem. Soc., 2008, 130, 404, An Enantioselective Organocatalytic Oxidative Dearomatization Strategy
DOI:10.1021/ja077457u

25. Chem. Rev., 2007, 107, 5596, Recent Developments in the Use of Catalytic Asymmetric Ammonium Enolates in Chemical Synthesis
DOI:10.1021/cr0683764

24. Drug Discovery Today, 2007, 12, 8, Enantioselective Organocatalysis Review
DOI:10.1016/j.drudis.2006.11.004

23. Angew. Chem., Int. Ed., 2006, 45, 6024, Enantioselective Catalytic Intramolecular Cyclopropanation using Modified Cinchona Alkaloid Organocatalysts
DOI:10.1002/ange.200602129

22. J. Am. Chem. Soc., 2006, 128, 2528, Mild Aerobic Oxidative Palladium (II) Catalyzed C-H Bond Functionalization: Regioselective and Switchable C-H Alkenylation and Annulation of Pyrroles
DOI:10.1021/ja058141u

21. Angew. Chem., Int. Ed., 2006, 45, 2116, Organocatalytic Sigmatropic Reactions: Development of a [2,3] Wittig Rearrangement through Secondary Amine Catalysis
DOI:10.1002/anie.200504301

20. Angew. Chem., Int. Ed., 2005, 44, 3125, Palladium-Catalyzed Intermolecular Alkenylation of Indoles via Solvent-Controlled Regioselective C-H Functionalization
DOI:10.1002/anie.200500468

19. Angew. Chem., Int. Ed., 2004, 43, 4641, Enantioselective Organocatalytic Cyclopropanation via Ammonium Ylides
DOI:10.1002/ange.200460234

18. Angew. Chem., Int. Ed., 2004, 43, 2681, An Intramolecular Organocatalytic Cyclopropanation Reaction
DOI:10.1002/anie.200454007

17. Angew. Chem. Int., Ed., 2003, 42, 828, Organic-Catalyst-Mediated Cyclopropanation Reaction
DOI:10.1002/anie.200390222

Postdoctoral Studies: Professor Steven Ley

16. J. Org. Chem., 2006, 7, 2715, Double Conjugate Addition of Dithiols to Propargylic Carbonyl Systems To Generate Protected 1,3-Dicarbonyl Compounds
DOI:10.1021/jo052514s

15. Synlett, 2005, 13, 2031, Synthesis of the EF Fragment of Spongistatin 1
DOI:10.1055/s-2005-871960

14. Angew. Chem., Int. Ed., 2005, 44, 5433, Total Synthesis of Spongistatin 1: Exploiting the Latent Pseudo-Symmetry
DOI:10.1002/anie.200502008

13. Org. Lett., 2003, 5, 4819, Synthesis of C-1-C-28 ABCD Unit of Spongistatin 1
DOI:10.1021/ol035849

12. Org. Lett., 2003, 5, 4815, A Practical and Efficient Synthesis of the C-16-C-28 Spiroketal Fragment (CD) of the Spongistatins
DOI:10.1021/ol035848h

11. Org. Lett., 2003, 5, 1147, Addition of Dithiols to Bis-Ynones: Development of a Versatile Platform for the Synthesis of Polyketide Natural Products
DOI:10.1021/ol034248f

10. Org. & Biomol. Chem., 2003, 1, 15, Development of β-Keto 1,3-Dithianes as Versatile Intermediates for Organic Synthesis
DOI:10.1039/b208982c

Postdoctoral Studies: Professor Amos Smith

9. J. Am. Chem. Soc., 2003, 125, 14435, Multicomponent Linchpin Couplings. Reaction of Dithiane Anions with Epoxides, Epichlorohydrin and Vinyl Epoxides: Efficient, Rapid and Stereocontrolled Assembly of Advanced Fragments for Complex Molecule Synthesis
DOI:10.1021/ja0376238

8. J. Am. Chem. Soc., 2002, 124, 14516, Dithiane Additions to Vinyl Epoxides: Steric Control over SN2 and SN2' Manifolds
DOI:10.1021/ja0283100

PhD Studies: Dr. Jonathan Spencer

7. Chemistry - A European Journal, 2006, 12, 949, Novel Anti-Markovnikov Regioselectivity in the Wacker Reaction of Styrenes
DOI:10.1002/chem.200400644

6. J. Org. Chem., 2002, 67, 4627, Convenient Preparation of Pure Trans-Arylalkenes via Palladium Catalyzed Isomerization of the Cis-Alkenes
DOI:10.1021/jo015880u

5. Chem. Comm., 2001, 1844, Evidence that the Availability of an Allylic Hydrogen Governs the Regioselectivity of the Wacker Oxidation
DOI:10.1039/b103066n

4. Org. Lett., 2001, 3, 25, Derailing the Wacker Oxidation: Development of a New Palladium Catalyzed Alkene Amination Reaction
DOI:10.1021/ol0066882

3. Org. Lett., 2000, 2, 1049, Selective Hydrogenolysis of Novel Benzyl Carbamate Protecting Groups
DOI:10.1021/ol005589l

2. Tetrahedron Lett., 1999, 40, 1803, Preferential Hydrogenolysis of NAP Esters Provides a New Orthogonal Protecting group Strategy for Carboxylic Acids
DOI:10.1016/S0040-4039(99)00014-3

1. J. Org. Chem., 1998, 63, 4172, Rational Design of Benzyl Type Protecting Groups Allows Sequential Deprotection of Hydroxyl Groups by Catalytic Hydrogenolysis
DOI:10.1021/jo980823v

Matthew Gaunt | Publications | Research | Contact | Intranet | Opportunities